Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Neurobiol Stress ; 25: 100547, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37547774

RESUMEN

Impairments in the function of the hypothalamic-pituitary-adrenal (HPA) axis and enhanced glucocorticoid receptor (GR) activity in the central amygdala (CeA) are critical mechanisms in the pathogenesis of alcohol use disorder (AUD). The GR antagonist mifepristone attenuates craving in AUD patients, alcohol consumption in AUD models, and decreases CeA γ-aminobutyric acid (GABA) transmission in alcohol-dependent rats. Previous studies suggest elevated GR activity in the CeA of male alcohol-preferring Marchigian-Sardinian (msP) rats, but its contribution to heightened CeA GABA transmission driving their characteristic post-dependent phenotype is largely unknown. We determined Nr3c1 (the gene encoding GR) gene transcription in the CeA in male and female msP and Wistar rats using in situ hybridization and studied acute effects of mifepristone (10 µM) and its interaction with ethanol (44 mM) on pharmacologically isolated spontaneous inhibitory postsynaptic currents (sIPSCs) and electrically evoked inhibitory postsynaptic potentials (eIPSPs) in the CeA using ex vivo slice electrophysiology. Female rats of both genotypes expressed more CeA GRs than males, suggesting a sexually dimorphic GR regulation of CeA activity. Mifepristone reduced sIPSC frequencies (GABA release) and eIPSP amplitudes in msP rats of both sexes, but not in their Wistar counterparts; however, it did not prevent acute ethanol-induced increase in CeA GABA transmission in male rats. In msP rats, GR regulates CeA GABAergic signaling under basal conditions, indicative of intrinsically active GR. Thus, enhanced GR function in the CeA represents a key mechanism contributing to maladaptive behaviors associated with AUD.

2.
Cells ; 12(15)2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37566022

RESUMEN

Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share dysregulated neuroimmune-related pathways. Here, we used our established rat model of comorbid post-traumatic stress disorder (PTSD)/AUD to characterize the interleukin 18 (IL-18) system in the central amygdala (CeA). Male and female rats underwent novel (NOV) and familiar (FAM) shock stress, or no stress (unstressed controls; CTL) followed by voluntary alcohol drinking and PTSD-related behaviors, then all received renewed alcohol access prior to the experiments. In situ hybridization revealed that the number of CeA positive cells for Il18 mRNA increased, while for Il18bp decreased in both male and female FAM stressed rats versus CTL. No changes were observed in Il18r1 expression across groups. Ex vivo electrophysiology showed that IL-18 reduced GABAA-mediated miniature inhibitory postsynaptic currents (mIPSCs) frequencies in CTL, suggesting reduced CeA GABA release, regardless of sex. Notably, this presynaptic effect of IL-18 was lost in both NOV and FAM males, while it persisted in NOV and FAM females. IL-18 decreased mIPSC amplitude in CTL female rats, suggesting postsynaptic effects. Overall, our results suggest that stress in rats with alcohol access impacts CeA IL-18-system expression and, in sex-related fashion, IL-18's modulatory function at GABA synapses.


Asunto(s)
Alcoholismo , Núcleo Amigdalino Central , Trastornos por Estrés Postraumático , Ratas , Masculino , Femenino , Animales , Alcoholismo/complicaciones , Núcleo Amigdalino Central/metabolismo , Interleucina-18/metabolismo , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Ácido gamma-Aminobutírico/metabolismo
3.
Neurobiol Dis ; 164: 105610, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995754

RESUMEN

Aberrant glucocorticoid signaling via glucocorticoid receptors (GR) plays a critical role in alcohol use disorder (AUD). Acute alcohol withdrawal and protracted abstinence in dependent rats are associated with increased GR signaling and changes in GR-mediated transcriptional activity in the rat central nucleus of the amygdala (CeA). The GR antagonist mifepristone decreases alcohol consumption in dependent rats during acute withdrawal and protracted abstinence. Regulation of CeA synaptic activity by GR is currently unknown. Here, we utilized mifepristone and the selective GR antagonist CORT118335 (both at 10 µM) as pharmacological tools to dissect the role of GR on GABA transmission in male, adult Sprague-Dawley rats using slice electrophysiology. We subjected rats to chronic intermittent alcohol vapor exposure for 5-7 weeks to induce alcohol dependence. A subset of dependent rats subsequently underwent protracted alcohol withdrawal for 2 weeks, and air-exposed rats served as controls. Mifepristone reduced the frequency of pharmacologically-isolated spontaneous inhibitory postsynaptic currents (sIPSC) in the CeA (medial subdivision) without affecting postsynaptic measures in all groups, suggesting decreased GABA release with the largest effect in dependent rats. CORT118335 did not significantly alter GABA transmission in naïve, but decreased sIPSC frequency in dependent rats. Similarly, mifepristone decreased amplitudes of evoked inhibitory postsynaptic potentials only in dependent rats and during protracted withdrawal. Collectively, our study provides insight into regulation of CeA GABAergic synapses by GR. Chronic ethanol enhances the efficiency of mifepristone and CORT118335, thus highlighting the potential of drugs targeting GR as a promising pharmacological avenue for the treatment of AUD.


Asunto(s)
Alcoholismo/fisiopatología , Amígdala del Cerebelo/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Antagonistas de Hormonas/farmacología , Mifepristona/farmacología , Receptores de Glucocorticoides/antagonistas & inhibidores , Sinapsis/efectos de los fármacos , Amígdala del Cerebelo/fisiopatología , Animales , Neuronas GABAérgicas/fisiología , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
4.
J Neurosci Res ; 99(12): 3354-3372, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687080

RESUMEN

Alcohol use disorder (AUD) and affective disorders are frequently comorbid and share underlying mechanisms that could be targets for comprehensive treatment. Post-traumatic stress disorder (PTSD) has high comorbidity with AUD, but comprehensive models of this overlap are nascent. We recently characterized a model of comorbid AUD and PTSD-like symptoms, wherein stressed rats receive an inhibitory avoidance (IA)-related footshock on two occasions followed by two-bottle choice (2BC) voluntary alcohol drinking. Stressed rats received the second footshock in a familiar (FAM, same IA box as the first footshock) or novel context (NOV, single-chambered apparatus); the FAM paradigm more effectively increased alcohol drinking in males and the NOV paradigm in females. During abstinence, stressed males displayed avoidance-like PTSD symptoms, and females showed hyperarousal-like PTSD symptoms. Rats in the model had altered spontaneous action potential-independent GABAergic transmission in the central amygdala (CeA), a brain region key in alcohol dependence and stress-related signaling. However, PTSD sufferers may have alcohol experience prior to their trauma. Here, we therefore modified our AUD/PTSD comorbidity model to provide 3 weeks of intermittent extended alcohol access before footshock and then studied the effects of NOV and FAM stress on drinking and PTSD phenotypes. NOV stress suppressed the escalation of alcohol intake and preference seen in male controls, but no stress effects were seen on drinking in females. Additionally, NOV males had decreased action potential-independent presynaptic GABA release and delayed postsynaptic GABAA receptor kinetics in the CeA compared to control and FAM males. Despite these changes to alcohol intake and CeA GABA signaling, stressed rats showed broadly similar anxiogenic-like behaviors to our previous comorbid model, suggesting decoupling of the PTSD symptoms from the AUD vulnerability for some of these animals. The collective results show the importance of alcohol history and trauma context in vulnerability to comorbid AUD/PTSD-like symptoms.


Asunto(s)
Alcoholismo , Trastornos por Estrés Postraumático , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/terapia , Animales , Comorbilidad , Femenino , Masculino , Fenotipo , Ratas , Trastornos por Estrés Postraumático/psicología
5.
Mol Psychiatry ; 26(7): 3093-3107, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33087855

RESUMEN

Alcohol use disorder (AUD) and anxiety disorders are frequently comorbid and share mechanisms that could be therapeutic targets. To facilitate mechanistic studies, we adapted an inhibitory avoidance-based "2-hit" rat model of posttraumatic stress disorder (PTSD) and identified predictors and biomarkers of comorbid alcohol (ethanol)/PTSD-like symptoms in these animals. Stressed Wistar rats received a single footshock on two occasions. The first footshock occurred when rats crossed into the dark chamber of a shuttle box. Forty-eight hours later, rats received the second footshock in a familiar (FAM) or novel (NOV) context. Rats then received 4 weeks of two-bottle choice (2BC) ethanol access. During subsequent abstinence, PTSD-like behavior responses, GABAergic synaptic transmission in the central amygdala (CeA), and circulating cytokine levels were measured. FAM and NOV stress more effectively increased 2BC drinking in males and females, respectively. Stressed male rats, especially drinking-vulnerable individuals (≥0.8 g/kg average 2-h ethanol intake with >50% ethanol preference), showed higher fear overgeneralization in novel contexts, increased GABAergic transmission in the CeA, and a profile of increased G-CSF, GM-CSF, IL-13, IL-6, IL-17a, leptin, and IL-4 that discriminated between stress context (NOV > FAM > Control). However, drinking-resilient males showed the highest G-CSF, IL-13, and leptin levels. Stressed females showed increased acoustic startle and decreased sleep maintenance, indicative of hyperarousal, with increased CeA GABAergic transmission in NOV females. This paradigm promotes key features of PTSD, including hyperarousal, fear generalization, avoidance, and sleep disturbance, with comorbid ethanol intake, in a sex-specific fashion that approximates clinical comorbidities better than existing models, and identifies increased CeA GABAergic signaling and a distinct pro-hematopoietic, proinflammatory, and pro-atopic cytokine profile that may aid in treatment.


Asunto(s)
Alcoholismo , Citocinas/sangre , Neuronas GABAérgicas/fisiología , Factores Sexuales , Trastornos por Estrés Postraumático , Transmisión Sináptica , Consumo de Bebidas Alcohólicas , Amígdala del Cerebelo , Animales , Femenino , Masculino , Ratas , Ratas Wistar
6.
Alcohol Clin Exp Res ; 44(2): 445-454, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782155

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) increases brain stress systems while suppressing reward system functioning. One expression of stress system recruitment is elevated GABAergic activity in the central amygdala (CeA), which is involved in the excessive drinking seen with AUD. The sulfonic amino acid taurine, a glycine receptor partial agonist, modulates GABAergic activity in the rewarding effects of alcohol. Despite taurine abundance in the amygdala, its role in the dysregulation of GABAergic activity associated with AUD has not been studied. Thus, here, we evaluated the effects of taurine on locally stimulated GABAergic neurotransmission in the CeA of naïve- and alcohol-dependent rats. METHODS: We recorded intracellularly from CeA neurons of naïve- and alcohol-dependent rats, quantifying locally evoked GABAA receptor-mediated inhibitory postsynaptic potentials (eIPSP). We examined the effects of taurine and alcohol on CeA eIPSP to characterize potential alcohol dependence-induced changes in the effects of taurine. RESULTS: We found that taurine decreased amplitudes of eIPSP in CeA neurons of naïve rats, without affecting the acute alcohol-induced facilitation of GABAergic responses. In CeA neurons from dependent rats, taurine no longer had an effect on eIPSP, but now blocked the ethanol (EtOH)-induced increase in eIPSP amplitude normally seen. Additionally, preapplication of the glycine receptor-specific antagonist strychnine blocked the EtOH-induced increase in eIPSP amplitude in neurons from naïve rats. CONCLUSIONS: These data suggest taurine may act to oppose the effects of acute alcohol via the glycine receptor in the CeA of naïve rats, and this modulatory system is altered in the CeA of dependent rats.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Núcleo Amigdalino Central/efectos de los fármacos , Etanol/toxicidad , Neuronas GABAérgicas/efectos de los fármacos , Receptores de Glicina/agonistas , Taurina/uso terapéutico , Alcoholismo/fisiopatología , Animales , Núcleo Amigdalino Central/fisiología , Etanol/administración & dosificación , Neuronas GABAérgicas/fisiología , Exposición por Inhalación/efectos adversos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Taurina/farmacología
7.
PLoS Biol ; 17(4): e2006421, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30990816

RESUMEN

Oxytocin administration has been reported to decrease consumption, withdrawal, and drug-seeking associated with several drugs of abuse and thus represents a promising pharmacological approach to treat drug addiction. We used an established rat model of alcohol dependence to investigate oxytocin's effects on dependence-induced alcohol drinking, enhanced motivation for alcohol, and altered GABAergic transmission in the central nucleus of the amygdala (CeA). Intraperitoneal oxytocin administration blocked escalated alcohol drinking and the enhanced motivation for alcohol in alcohol-dependent but not nondependent rats. Intranasal oxytocin delivery fully replicated these effects. Intraperitoneal administration had minor but significant effects of reducing locomotion and intake of non-alcoholic palatable solutions, whereas intranasal oxytocin administration did not. In dependent rats, intracerebroventricular administration of oxytocin or the oxytocin receptor agonist PF-06655075, which does not cross the blood-brain barrier (i.e., it would not diffuse to the periphery), but not systemic administration of PF-06655075 (i.e., it would not reach the brain), decreased alcohol drinking. Administration of a peripherally restricted oxytocin receptor antagonist did not reverse the effect of intranasal oxytocin on alcohol drinking. Ex vivo electrophysiological recordings from CeA neurons indicated that oxytocin decreases evoked GABA transmission in nondependent but not in dependent rats, whereas oxytocin decreased the amplitude of spontaneous GABAergic responses in both groups. Oxytocin blocked the facilitatory effects of acute alcohol on GABA release in the CeA of dependent but not nondependent rats. Together, these results provide converging evidence that oxytocin specifically and selectively blocks the enhanced motivation for alcohol drinking that develops in alcohol dependence likely via a central mechanism that may result from altered oxytocin effects on CeA GABA transmission in alcohol dependence. Neuroadaptations in endogenous oxytocin signaling may provide a mechanism to further our understanding of alcohol use disorder.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Neuronas GABAérgicas/efectos de los fármacos , Oxitocina/farmacología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Etanol/metabolismo , Etanol/farmacología , Potenciales Postsinápticos Inhibidores/fisiología , Inyecciones Intraperitoneales , Masculino , Motivación/efectos de los fármacos , Neuronas/fisiología , Oxitocina/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Transmisión Sináptica/fisiología
8.
Neuropharmacology ; 125: 418-428, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28807676

RESUMEN

Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) is hypothesized to drive the development of alcohol dependence, as it regulates ethanol intake and several anxiogenic behaviors linked to withdrawal. Excitatory glutamatergic neurotransmission contributes to alcohol reinforcement, tolerance and dependence. Therefore, in this study we used in vitro slice electrophysiology to investigate the effects of CRF and its receptor subtype (CRF1 and CRF2) antagonists on both evoked and spontaneous action potential-independent glutamatergic transmission in the CeA of naive and ethanol-dependent Sprague-Dawley rats. We found that CRF (25-200 nM) concentration-dependently diminished evoked compound excitatory postsynaptic potentials (EPSPs), but increased miniature excitatory postsynaptic current (mEPSC) frequencies similarly in CeA neurons of both naïve and ethanol-dependent rats, indicating reduced evoked glutamatergic responses and enhanced vesicular glutamate release, respectively. This CRF-induced vesicular glutamate release was prevented by the CRF1/2 antagonist (Astressin B) and the CRF1 antagonist (R121919), but not by the CRF2 antagonist (Astressin 2B). Similarly, CRF's effects on evoked glutamatergic responses were completely blocked by CRF1 antagonism, but only slightly decreased in the presence of the CRF2 antagonist. Moreover, CRF1 antagonism reveals a tonic facilitation of vesicular glutamate, whereas the CRF2 antagonism revealed a tonic inhibition of vesicular glutamate release. Collectively our data show that CRF primarily acts at presynaptic CRF1 to produce opposite effects on CeA evoked and spontaneous glutamate release and that the CRF system modulates CeA glutamatergic synapses throughout the development of alcohol dependence.


Asunto(s)
Alcoholismo/metabolismo , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ácido Glutámico/metabolismo , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Hormona Liberadora de Corticotropina/administración & dosificación , Modelos Animales de Enfermedad , Etanol/farmacología , Masculino , Neurotransmisores/farmacología , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
9.
Biol Psychiatry ; 82(7): 500-510, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209423

RESUMEN

BACKGROUND: Corticotropin-releasing factor (CRF) mediates anxiogenic responses by activating CRF type 1 (CRF1) receptors in limbic brain regions. Anxiety is further modulated by the endogenous cannabinoid (eCB) system that attenuates the synaptic effects of stress. In the amygdala, acute stress activates the enzymatic clearance of the eCB N-arachidonoylethanolamine via fatty acid amide hydrolase (FAAH), although it is unclear whether chronic dysregulation of CRF systems induces maladaptive changes in amygdalar eCB signaling. Here, we used genetically selected Marchigian Sardinian P (msP) rats carrying an innate overexpression of CRF1 receptors to study the role of constitutive upregulation in CRF systems on amygdalar eCB function and persistent anxiety-like effects. METHODS: We applied behavioral, pharmacological, and biochemical methods to broadly characterize anxiety-like behaviors and amygdalar eCB clearance enzymes in msP versus nonselected Wistar rats. Subsequent studies examined the influence of dysregulated CRF and FAAH systems in altering excitatory transmission in the central amygdala (CeA). RESULTS: msPs display an anxious phenotype accompanied by elevations in amygdalar FAAH activity and reduced dialysate N-arachidonoylethanolamine levels in the CeA. Elevations in CRF-CRF1 signaling dysregulate FAAH activity, and this genotypic difference is normalized with pharmacological blockade of CRF1 receptors. msPs also exhibit elevated baseline glutamatergic transmission in the CeA, and dysregulated CRF-FAAH facilitates stress-induced increases in glutamatergic activity. Treatment with an FAAH inhibitor relieves sensitized glutamatergic responses in msPs and attenuates the anxiety-like phenotype. CONCLUSIONS: Pathological anxiety and stress hypersensitivity are driven by constitutive increases in CRF1 signaling that dysregulate N-arachidonoylethanolamine signaling mechanisms and reduce neuronal inhibitory control of CeA glutamatergic synapses.


Asunto(s)
Amidohidrolasas/metabolismo , Amígdala del Cerebelo/metabolismo , Ansiedad/patología , Hormona Liberadora de Corticotropina/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Amígdala del Cerebelo/efectos de los fármacos , Animales , Ansiedad/tratamiento farmacológico , Cannabinoides/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Piperidinas/farmacología , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Mutantes , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismo
10.
Neuropharmacology ; 102: 21-31, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26519902

RESUMEN

The CRF system of the central nucleus of the amygdala (CeA) is important for the processing of anxiety, stress, and effects of acute and chronic ethanol. We previously reported that ethanol decreases evoked glutamate transmission in the CeA of Sprague Dawley rats and that ethanol dependence alters glutamate release in the CeA. Here, we examined the effects of ethanol, CRF and a CRF1 receptor antagonist on spontaneous and evoked glutamatergic transmission in CeA neurons from Wistar and Marchigian Sardinian Preferring (msP) rats, a rodent line genetically selected for excessive alcohol drinking and characterized by heightened activity of the CRF1 system. Basal spontaneous and evoked glutamate transmission in CeA neurons from msP rats was increased compared to Wistar rats. Ethanol had divergent effects, either increasing or decreasing spontaneous glutamate release in the CeA of Wistar rats. This bidirectional effect was retained in msP rats, but the magnitude of the ethanol-induced increase in glutamate release was significantly smaller. The inhibitory effect of ethanol on evoked glutamatergic transmission was similar in both strains. CRF also either increased or decreased spontaneous glutamate release in CeA neurons of Wistar rats, however, in msP rats CRF only increased glutamate release. The inhibitory effect of CRF on evoked glutamatergic transmission was also lost in neurons from msP rats. A CRF1 antagonist produced only minor effects on spontaneous glutamate transmission, which were consistent across strains, and no effects on evoked glutamate transmission. These results demonstrate that the genetically altered CRF system of msP rats results in alterations in spontaneous and stimulated glutamate signaling in the CeA that may contribute to both the anxiety and drinking behavioral phenotypes.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Núcleo Amigdalino Central/metabolismo , Etanol/administración & dosificación , Ácido Glutámico/metabolismo , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Animales , Núcleo Amigdalino Central/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Neuronas/efectos de los fármacos , Pirimidinas/farmacología , Ratas , Ratas Wistar
11.
Front Pharmacol ; 6: 49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852553

RESUMEN

Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1ß (IL-1ß), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2-12.7 g/kg (3-15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1ß (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1ß (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1ß receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1ß on mIPSC frequencies. These results suggest that IL-1ß can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1ß did not alter ethanol's enhancement of the eIPSP amplitude, but, in IL-1ß-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1ß interacts with the ethanol-induced facilitation of CeA GABAergic transmission.

12.
Artículo en Inglés | MEDLINE | ID: mdl-24600360

RESUMEN

The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. A large body of evidence shows that Nociceptin/Orphanin FQ (N/OFQ) regulates ethanol intake and anxiety-like behavior. In the rat, ethanol significantly augments CeA GABA release, whereas N/OFQ diminishes it. Using electrophysiological techniques in an in vitro slice preparation, in this study we investigated the effects of a nonpeptidergic NOP receptor agonist, MT-7716 [(R)-2-3-[1-(Acenaphthen-1-yl)piperidin-4-yl]-2-oxo-2,3-dihydro-1H-benzimidazol-1-yl-N-methylacetamide hydrochloride hydrate], and its interaction with ethanol on GABAergic transmission in CeA slices of naïve rats. We found that MT-7716 dose-dependently (100-1000 nM) diminished evoked GABAA receptor-mediated inhibitory postsynaptic potentials (IPSPs) and increased paired-pulse facilitation (PPF) ratio of these evoked IPSPs, suggesting a presynaptic site of action of the MT-7716 by decreasing GABA release at CeA synapses. The presynaptic action of MT-7716 was also supported by the significant decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) induced by the nociceptin receptor (NOP) agonist. Interestingly, MT-7716 prevented the ethanol-induced augmentation of evoked IPSPs. A putative selective NOP antagonist, [Nphe1]Nociceptin(1-13)NH2, totally prevented the MT-7716-induced inhibition of IPSP amplitudes indicating that MT-7716 exerts its effect through NOPs. These data provide support for an interaction between the nociceptin and GABAergic systems in the CeA and for the anti-alcohol properties of the NOP activation. The development of a synthetic nonpeptidergic NOP receptor agonist such as MT-7716 may represent a useful therapeutic target for alcoholism.

13.
J Neurosci ; 34(2): 363-72, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403138

RESUMEN

Corticotropin releasing factor (CRF) is the primary mediator of stress responses, and nociceptin/orphanin FQ (N/OFQ) plays an important role in the modulation of these stress responses. Thus, in this multidisciplinary study, we explored the relationship between the N/OFQ and the CRF systems in response to stress. Using in situ hybridization (ISH), we assessed the effect of body restraint stress on the gene expression of CRF and N/OFQ-related genes in various subdivisions of the amygdala, a critical brain structure involved in the modulation of stress response and anxiety-like behaviors. We found a selective upregulation of the NOP and downregulation of the CRF1 receptor transcripts in the CeA and in the BLA after body restraint. Thus, we performed intracellular electrophysiological recordings of GABAA-mediated IPSPs in the central nucleus of the amygdala (CeA) to explore functional interactions between CRF and N/OFQ systems in this brain region. Acute application of CRF significantly increased IPSPs in the CeA, and this enhancement was blocked by N/OFQ. Importantly, in stress-restraint rats, baseline CeA GABAergic responses were elevated and N/OFQ exerted a larger inhibition of IPSPs compared with unrestraint rats. The NOP antagonist [Nphe1]-nociceptin(1-13)NH2 increased the IPSP amplitudes in restraint rats but not in unrestraint rats, suggesting a functional recruitment of the N/OFQ system after acute stress. Finally, we evaluated the anxiety-like response in rats subjected to restraint stress and nonrestraint rats after N/OFQ microinjection into the CeA. Intra-CeA injections of N/OFQ significantly and selectively reduced anxiety-like behavior in restraint rats in the elevated plus maze. These combined results demonstrate that acute stress increases N/OFQ systems in the CeA and that N/OFQ has antistress properties.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Conducta Animal/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Péptidos Opioides/metabolismo , Animales , Modelos Animales de Enfermedad , Hibridación in Situ , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Restricción Física , Estrés Psicológico/metabolismo , Transcriptoma
14.
Neuropsychopharmacology ; 39(5): 1081-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24169802

RESUMEN

The central nucleus of the amygdala (CeA) mediates several addiction-related processes and nociceptin/orphanin FQ (nociceptin) regulates ethanol intake and anxiety-like behaviors. Glutamatergic synapses, in the CeA and throughout the brain, are very sensitive to ethanol and contribute to alcohol reinforcement, tolerance, and dependence. Previously, we reported that in the rat CeA, acute and chronic ethanol exposures significantly decrease glutamate transmission by both pre- and postsynaptic actions. In this study, using electrophysiological techniques in an in vitro CeA slice preparation, we investigated the effects of nociceptin on glutamatergic transmission and its interaction with acute ethanol in naive and ethanol-dependent rats. We found that nociceptin (100-1000 nM) diminished basal-evoked compound glutamatergic receptor-mediated excitatory postsynaptic potentials (EPSPs) and spontaneous and miniature EPSCs (s/mEPSCs) by mainly decreasing glutamate release in the CeA of naive rats. Notably, nociceptin blocked the inhibition induced by acute ethanol (44 mM) and ethanol blocked the nociceptin-induced inhibition of evoked EPSPs in CeA neurons of naive rats. In neurons from chronic ethanol-treated (ethanol-dependent) rats, the nociceptin-induced inhibition of evoked EPSP amplitude was not significantly different from that in naive rats. Application of [Nphe1]Nociceptin(1-13)NH2, a nociceptin receptor (NOP) antagonist, revealed tonic inhibitory activity of NOP on evoked CeA glutamatergic transmission only in ethanol-dependent rats. The antagonist also blocked nociceptin-induced decreases in glutamatergic responses, but did not affect ethanol-induced decreases in evoked EPSP amplitude. Taken together, these studies implicate a potential role for the nociceptin system in regulating glutamatergic transmission and a complex interaction with ethanol at CeA glutamatergic synapses.


Asunto(s)
Amígdala del Cerebelo/efectos de los fármacos , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Ácido Glutámico/metabolismo , Péptidos Opioides/metabolismo , Transmisión Sináptica/efectos de los fármacos , Trastornos Relacionados con Alcohol/tratamiento farmacológico , Trastornos Relacionados con Alcohol/fisiopatología , Amígdala del Cerebelo/fisiopatología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Microelectrodos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Técnicas de Placa-Clamp , Ratas , Ratas Wistar , Receptores Opioides/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Receptor de Nociceptina
15.
Biol Psychiatry ; 74(7): 520-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23751206

RESUMEN

BACKGROUND: Studies have demonstrated an enhanced dynorphin/kappa-opioid receptor (KOR) system following repeated cocaine exposure, but few reports have focused on neuroadaptations within the central amygdala (CeA). METHODS: We identified KOR-related physiological changes in the CeA following escalation of cocaine self-administration in rats. We used in vitro slice electrophysiological (intracellular and whole-cell recordings) methods to assess whether differential cocaine access in either 1-hour (short access [ShA]) or 6-hour (long access [LgA]) sessions induced plasticity at CeA gamma-aminobutyric acid (GABA)ergic synapses or altered the sensitivity of these synapses to KOR agonism (U50488) or antagonism (norbinaltorphimine [norBNI]). We then determined the functional effects of CeA KOR blockade in cocaine-related behaviors. RESULTS: Baseline evoked GABAergic transmission was enhanced in the CeA from ShA and LgA rats compared with cocaine-naïve rats. Acute cocaine (1 µmol/L) application significantly decreased GABA release in all groups (naïve, ShA, and LgA rats). Application of U50488 (1 µmol/L) significantly decreased GABAergic transmission in the CeA from naïve rats but increased it in LgA rats. Conversely, norBNI (200 nmol/L) significantly increased GABAergic transmission in the CeA from naïve rats but decreased it in LgA rats. Norbinaltorphimine did not alter the acute cocaine-induced inhibition of GABAergic responses. Finally, CeA microinfusion of norBNI blocked cocaine-induced locomotor sensitization and attenuated the heightened anxiety-like behavior observed during withdrawal from chronic cocaine exposure in the defensive burying paradigm. CONCLUSIONS: Together these data demonstrate that CeA dynorphin/KOR systems are dysregulated following excessive cocaine exposure and suggest KOR antagonism as a viable therapeutic strategy for cocaine addiction.


Asunto(s)
Amígdala del Cerebelo/fisiopatología , Trastornos Relacionados con Cocaína/fisiopatología , Potenciales Postsinápticos Inhibidores , Receptores Opioides kappa/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Cocaína/administración & dosificación , Masculino , Ratas , Ratas Wistar , Autoadministración
16.
Neuropharmacology ; 67: 337-48, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23220399

RESUMEN

The GABAergic system in the central amygdala (CeA) plays a major role in ethanol dependence and the anxiogenic-like response to ethanol withdrawal. Alcohol dependence is associated with increased corticotropin releasing factor (CRF) influence on CeA GABA release and CRF type 1 receptor (CRF(1)) antagonists prevent the excessive alcohol consumption associated with dependence. Genetically selected Marchigian Sardinian (msP) rats have an overactive extrahypothalamic CRF(1) system, are highly sensitive to stress, and display an innate preference for alcohol. The present study examined differences in CeA GABAergic transmission and the effects of ethanol, CRF and a CRF(1) antagonist in msP, Sprague Dawley, and Wistar rats using an electrophysiological approach. We found no significant differences in membrane properties or mean amplitude of evoked GABA(A)-inhibitory postsynaptic potentials (IPSPs). However, paired-pulse facilitation (PPF) ratios of evoked IPSPs were significantly lower and spontaneous miniature inhibitory postsynaptic current (mIPSC) frequencies were higher in msP rats, suggesting increased CeA GABA release in msP as compared to Sprague Dawley and Wistar rats. The sensitivity of spontaneous GABAergic transmission to ethanol (44 mM), CRF (200 nM) and CRF(1) antagonist (R121919, 1 µM) was comparable in msP, Sprague Dawley, and Wistar rats. However, a history of ethanol drinking significantly increased the baseline mIPSC frequency and decreased the effects of a CRF(1) antagonist in msP rats, suggesting increased GABA release and decreased CRF(1) sensitivity. These results provide electrophysiological evidence that msP rats display distinct CeA GABAergic activity as compared to Sprague Dawley and Wistar rats. The elevated GABAergic transmission observed in naïve msP rats is consistent with the neuroadaptations reported in Sprague Dawley rats after the development of ethanol dependence.


Asunto(s)
Alcoholismo/fisiopatología , Amígdala del Cerebelo/fisiología , Hormona Liberadora de Corticotropina/fisiología , Etanol/farmacología , Neuronas GABAérgicas/fisiología , Transmisión Sináptica/fisiología , Alcoholismo/genética , Amígdala del Cerebelo/efectos de los fármacos , Animales , Etanol/administración & dosificación , Neuronas GABAérgicas/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de GABA-A/fisiología , Especificidad de la Especie , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA